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The Elephant and the Blind Men

Credit: https://en.wikipedia.org/wiki/File:Blind_men_and_elephant3.jpg
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The Reality of Business Analytics

API

data sciencedevops data analysts LoB analysts

LoB leader



The Reality of Data Tools

Excel is User 
“friendly” but …

limits Abstraction 
and Composition

R/Python offer 
expressive power 
and rich libraries 
but …

pose high entry 
barrier to non-
coders

Integration and Collaboration are critical
across developers, data scientists and analysts



The Opportunity

1
Self Service

Every participant is 
empowered to use the 

organizational data 
effectively

2
Abstraction

Each participant interacts 
with the data using the 

vocabulary of their 
organization layer, build 

abstractions to fit

3
Collaboration

Each participant is equally 
a producer and consumer.

Reuse, extend, amplify!



Clojure for Business Teams - a clarification

It’s not about ...

● substituting Clojure for R/Python
● Clojure IDE or DSL

It IS about …

● rethinking Data Tools with learnings from Clojure and its 
ecosystem

● function abstractions, composition and immutable data
● interactive, incremental development and testing

… for business users



Visual schematic metaphor

Interactive and introspective UX

FP and Data Flow principles

Clojure as an extension language 



DEMO



Anatomy of a Component Graph

(-> (Inclusive-Range 1.0 10.0 1)

    (Collect nil #'square)

    (Console-Print))

(defn Inclusive-Range

   [start end step] …)

(defn Collect

  [collection context …)

(defn Console-Print

  [value tag] …)



Abstract Module - Square

(defn square [number]

  (Expression “$1 * $1” [number]))



Complex Connections

(let [ds (load-and-split-dataset src)]
  (-> (->> (train-Linear-Regression ds :cnt)
           (test-model ds)
           (Add-Column (:testset ds) :lr-cnt))
      (HTML-Data-Table [] "add-lr")))



Defining a Base Component

(defmodule Format-Timestamp

  {:id "b8104d76-5b4e-4e12-bf20-fd250d61344a"

   :name "Format Timestamp"

   :description "Convert a Timestamp value to Date and Time string"

   :tags [:foundation]

   :inputs [{:id "timestamp" :schema :any}

            {:id "format" :schema :string}

            {:id "timezone" :schema :string}]

   :output {:id "result" :schema :string}}

  [ts & [format timezone]]

  (-> (or (not-empty format) "yyyy-MM-dd'T'HH:mm:ss.SSSZ")

      (u/simple-date-format (or (not-empty timezone) "UTF"))

      (.format ts)))



Under the hood

transpile
to

Clojure

render
as

uberjar

run

lein

● namespace per 
module

● implicit require of 
sibling modules

design workbench deployment platform

console & debug



Our Technology Stack

designer
front-end design

services
design

services deploy
services

deploy
services

deploy
services

clojurescript
om

figwheel

clojure
clojure.data.*

clojure.java.jdbc
amazonica

http-kit
ring

incanter
instaparse

clj-hazelcast
clj-docker

clj-ml / weka
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What’s next?

Nascent project, working Alpha release

Focused engagements building solutions for companies in 
Semiconductor, Pharma and IoT verticals

Technical roadmap

Clojure developer community engagement



Thanks
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