
Clojure for Business Teams
Decomplecting Data Analysis

Ram Krishnan
Founder/CTO juxt.io

ram@juxt.io
@funcall

kriyative.github.io

mailto:ram@juxt.io
mailto:ram@juxt.io

The Elephant and the Blind Men

Credit: https://en.wikipedia.org/wiki/File:Blind_men_and_elephant3.jpg

https://en.wikipedia.org/wiki/File:Blind_men_and_elephant3.jpg

The Reality of Business Analytics

API

data sciencedevops data analysts LoB analysts

LoB leader

The Reality of Data Tools

Excel is User
“friendly” but …

limits Abstraction
and Composition

R/Python offer
expressive power
and rich libraries
but …

pose high entry
barrier to non-
coders

Integration and Collaboration are critical
across developers, data scientists and analysts

The Opportunity

1
Self Service

Every participant is
empowered to use the

organizational data
effectively

2
Abstraction

Each participant interacts
with the data using the

vocabulary of their
organization layer, build

abstractions to fit

3
Collaboration

Each participant is equally
a producer and consumer.

Reuse, extend, amplify!

Clojure for Business Teams - a clarification

It’s not about ...

● substituting Clojure for R/Python
● Clojure IDE or DSL

It IS about …

● rethinking Data Tools with learnings from Clojure and its
ecosystem

● function abstractions, composition and immutable data
● interactive, incremental development and testing

… for business users

Visual schematic metaphor

Interactive and introspective UX

FP and Data Flow principles

Clojure as an extension language

DEMO

Anatomy of a Component Graph

(-> (Inclusive-Range 1.0 10.0 1)

 (Collect nil #'square)

 (Console-Print))

(defn Inclusive-Range

 [start end step] …)

(defn Collect

 [collection context …)

(defn Console-Print

 [value tag] …)

Abstract Module - Square

(defn square [number]

 (Expression “$1 * $1” [number]))

Complex Connections

(let [ds (load-and-split-dataset src)]
 (-> (->> (train-Linear-Regression ds :cnt)
 (test-model ds)
 (Add-Column (:testset ds) :lr-cnt))
 (HTML-Data-Table [] "add-lr")))

Defining a Base Component

(defmodule Format-Timestamp

 {:id "b8104d76-5b4e-4e12-bf20-fd250d61344a"

 :name "Format Timestamp"

 :description "Convert a Timestamp value to Date and Time string"

 :tags [:foundation]

 :inputs [{:id "timestamp" :schema :any}

 {:id "format" :schema :string}

 {:id "timezone" :schema :string}]

 :output {:id "result" :schema :string}}

 [ts & [format timezone]]

 (-> (or (not-empty format) "yyyy-MM-dd'T'HH:mm:ss.SSSZ")

 (u/simple-date-format (or (not-empty timezone) "UTF"))

 (.format ts)))

Under the hood

transpile
to

Clojure

render
as

uberjar

run

lein

● namespace per
module

● implicit require of
sibling modules

design workbench deployment platform

console & debug

Our Technology Stack

designer
front-end design

services
design

services deploy
services

deploy
services

deploy
services

clojurescript
om

figwheel

clojure
clojure.data.*

clojure.java.jdbc
amazonica

http-kit
ring

incanter
instaparse

clj-hazelcast
clj-docker

clj-ml / weka

Acknowledgments

Yahoo Pipes Apple Quartz Composer MIT Scratch

… and many others

What’s next?

Nascent project, working Alpha release

Focused engagements building solutions for companies in
Semiconductor, Pharma and IoT verticals

Technical roadmap

Clojure developer community engagement

Thanks

Ram Krishnan
Founder/CTO juxt.io
ram@juxt.io
@funcall
kriyative.github.io

Clojure for Business Teams

mailto:ram@juxt.io
mailto:ram@juxt.io

